A Hybrid Monte-Carlo Sampling Smoother for Four Dimensional Data Assimilation
نویسندگان
چکیده
This paper constructs an ensemble-based sampling smoother for fourdimensional data assimilation using a Hybrid/Hamiltonian Monte-Carlo approach. The smoother samples efficiently from the posterior probability density of the solution at the initial time. Unlike the well-known ensemble Kalman smoother, which is optimal only in the linear Gaussian case, the proposed methodology naturally accommodates non-Gaussian errors and non-linear model dynamics and observation operators. Unlike the four-dimensional variational method, which only finds a mode of the posterior distribution, the smoother provides an estimate of the posterior uncertainty. One can use the ensemble mean as the minimum variance estimate of the state, or can use the ensemble in conjunction with the variational approach to estimate the background errors for subsequent assimilation windows. Numerical results demonstrate the advantages of the proposed method compared to the traditional variational and ensemblebased smoothing methods.
منابع مشابه
The Reduced-Order Hybrid Monte Carlo Sampling Smoother
Hybrid Monte-Carlo (HMC) sampling smoother is a fully non-Gaussian four-dimensional data assimilation algorithm that works by directly sampling the posterior distribution formulated in the Bayesian framework. The smoother in its original formulation is computationally expensive due to the intrinsic requirement of running the forward and adjoint models repeatedly. Here we present computationally...
متن کاملA Path Integral Method for Data Assimilation
We describe a path integral approach for data assimilation. It is based on the generalized hybrid Monte Carlo sampling scheme. Since it makes no assumptions on linearity in the dynamics, or on Gaussianity in the statistics, it permits consideration of very general estimation problems. The method can be used for such tasks as computing a smoother solution, parameter estimation, and data/model in...
متن کاملA Hybrid Monte Carlo Sampling Filter for Non-Gaussian Data Assimilation
Data assimilation combines information from models, measurements, and priors to obtain improved estimates of the state of a dynamical system such as the atmosphere. Ensemble-based data assimilation approaches such as the Ensemble Kalman filter (EnKF) have gained wide popularity due to their simple formulation, ease of implementation, and good practical results. Many of these methods are derived...
متن کاملCluster Sampling Filters for Non-Gaussian Data Assimilation
This paper presents a fully non-Gaussian version of the Hamiltonian Monte Carlo (HMC) sampling filter. The Gaussian prior assumption in the original HMC filter is relaxed. Specifically, a clustering step is introduced after the forecast phase of the filter, and the prior density function is estimated by fitting a Gaussian Mixture Model (GMM) to the prior ensemble. Using the data likelihood func...
متن کاملThe Analog Ensemble Kalman Filter and Smoother
In classical data assimilation using sequential Monte Carlo methods, a physical model is run at each time steps to simulate members corresponding to different forecast scenarios. In this paper, we propose to use statistical analogs provided by observational or model-simulated data to emulate the dynamical model and generate relevant forecast members. This new methodology is called AnEnKF/AnEnFS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1505.04724 شماره
صفحات -
تاریخ انتشار 2015